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TechnetiumTechnetium

99Tc is a fission product

Fission yield of 6.1% from 235U and 5.9% from 239Pu

21 known isotopes 90Tc – 110Tc

3 isotopes have long half-lives
97Tc(t1/2) = 2.6 x 106 y
98Tc(t1/2) = 4.2 x 106 y
99Tc(t1/2) = 2.14 x 105 y *
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Groundwater Contamination Plumes
at Hanford

Groundwater Contamination Plumes
at Hanford
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Active Areas of Groundwater
Remediation at Hanford

Active Areas of Groundwater
Remediation at Hanford
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Effects of Pump and Treat on 99Tc at
Hanford’s 224-U

Effects of Pump and Treat on 99Tc at
Hanford’s 224-U
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Oxidation and ReductionOxidation and Reduction

aA + bB + ne- = cC + dD

Oxidized state Reduced state

G°, E°, K° Reactants and products at standard state

E°(volts) = - Gr°/nF

Eh(volts) = E° +  RT   ln  (A)a(B)b

nF (C)c(D)d
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Tc Redox ChemistryTc Redox Chemistry

Tc(VII) and Tc(IV) are most stable valence species

1. TcO4
- + 4H+ + 3e- = TcO2•xH2O(s) + (2-x) H2O(l)

E° (298.15K) = 0.746 ± 0.012 V

log10K° = 37.8

 Formulated between reference species of each oxidation

2. TcO4
- + 4H+ + 3e- = TcO(OH)2(aq) + H2O(l)

E° = 0.579 V, log10K° = 29.4

 TcO(OH)2 is the major aqueous species in non-complexing solutions

 between pH 2 and 10

3. TcO4
- + 3Fe2+

(aq) = TcO(OH)2(aq) + Fe(OH)3(s) + 5H+

log10K° = -21.8

@ pH 7 Fe2+ = 10-3 mol/L, Tc(VII) = 10-12.2 mol/L

Fe2+ = 10-6 mol/L, Tc(VII) = 10-3.2 mol/L
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Solubility of TcO2•nH2OSolubility of TcO2•nH2O

TcO(OH)°
2(aq)
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Stability Diagram for TcO4
-/TcO2•nH2O

in Presence of CO2(g)

Stability Diagram for TcO4
-/TcO2•nH2O

in Presence of CO2(g)
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Stability Diagram for UO2
2+/UO2(c) in

Presence of CO2(g)

Stability Diagram for UO2
2+/UO2(c) in

Presence of CO2(g)
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Redox Ladder at pH = 7 and 25° C
[Aqueous species at equimolar concentrations, others as noted]

Redox Ladder at pH = 7 and 25° C
[Aqueous species at equimolar concentrations, others as noted]
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TcO4
- and NaNO3 Beneath Leaked

Hanford HLW Tank SX-108
TcO4

- and NaNO3 Beneath Leaked
Hanford HLW Tank SX-108
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TcO4
- Co-Contaminants Associated

with Hanford REDOX Waste
TcO4

- Co-Contaminants Associated
with Hanford REDOX Waste

 

40 60 80 100 120 140 160
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 
99

Tc

 
129

I Normalized 

          to 
99
Tc Fission Yield

Sample Depth (Feet bgs)

9
9

T
c

 C
o

n
c

e
n

tr
a

ti
o

n
 (

p
p

m
)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

F
Y

 N
o

rm
a

liz
e

d
 I-1

2
9

 (p
p

m
)

40 60 80 100 120 140 160
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7  
99

Tc
 Nitrate

Sample Depth (Feet bgs)

9
9

T
c

 C
o

n
c

e
n

tr
a

ti
o

n
 (

p
p

m
)

0

10000

20000

30000

40000

50000

N
itra

te
 C

o
n

c
e

n
tra

tio
n

 (p
p

m
)

40 60 80 100 120 140 160
0.00

0.05

0.10

0.15

0.20
 
127

I

 
129

I 

Sample Depth (Feet bgs)

1
2

7

I 
C

o
n

c
e
n

tr
a
ti

o
n

 (
p

p
m

)

0.0000

0.0005

0.0010

0.0015

1
2

9I C
o

n
c
e
n

tra
tio

n
 (p

p
m

)

40 60 80 100 120 140 160
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7  
99

Tc

 Chromium

Sample Depth (Feet bgs)

9
9

T
c

 C
o

n
c

e
n

tr
a

ti
o

n
 (

p
p

m
)

0
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900

C
h

ro
m

iu
m

 C
o

n
c

e
n

tra
tio

n
 (p

p
m

)

a.

b.

c.

d.



14

Pacific Northwest National Laboratory

U.S. Department of Energy

Laboratory Studies of Tc Reduction
and Oxidation

Laboratory Studies of Tc Reduction
and Oxidation

John Zachara, Jim Fredrickson, Jim McKinley, Ravi
Kukkadapu, Dave Kennedy, Andy Plymale, and Steve Smith

Pacific Northwest National Laboratory, Richland, WA
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Laboratory Studies of Tc Reduction
and Oxidation

Laboratory Studies of Tc Reduction
and Oxidation

Experimental Issues

Reactivity of biogenic Fe(II) for Tc(VII) reduction

Reactive forms and their properties and concentration terms

Kinetic parameters and empirical correlations

Nature of reduction products

Biogeochemical context and microbiologic relationships

Factors controlling oxidation rate

Intrinsic oxidation kinetics

Mineral residence, spatial location, and mass transfer effects

In-situ features controlling reaction rate

Bacterial oxidation
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Distribution of Fe in the FRC
Background Sediment

Distribution of Fe in the FRC
Background Sediment
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Goethite in the Background FRC SedimentGoethite in the Background FRC Sediment
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Reduction and Oxidation Behavior of TcO4
-

and Biogenic TcO2•nH2O in FRC Sediment
Reduction and Oxidation Behavior of TcO4

-

and Biogenic TcO2•nH2O in FRC Sediment
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X-ray Absorption, XANES Spectra for Tc(VII)
and Tc(IV) Compounds and Bioreduced

Sediments Reacted with TcO4
-

X-ray Absorption, XANES Spectra for Tc(VII)
and Tc(IV) Compounds and Bioreduced
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Synchrotron X-ray Microscopy of Bioreduced
FRC Sediment that was Spiked with TcO4

-

Synchrotron X-ray Microscopy of Bioreduced
FRC Sediment that was Spiked with TcO4

-
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Effect of Fe(II) on TcO4
- Reduction in

HAH Extracted FRC Sediment
Effect of Fe(II) on TcO4

- Reduction in
HAH Extracted FRC Sediment
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TcO4
- Reduction by Bioreduced,

Pasteurized Eatontown Hematite Sediment
TcO4

- Reduction by Bioreduced,
Pasteurized Eatontown Hematite Sediment
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First Order Rate Dependency of TcO4
-

Reduction on Biogenic Fe(II) Concentration
First Order Rate Dependency of TcO4

-

Reduction on Biogenic Fe(II) Concentration
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Synchrotron X-ray Microscopy of Bioreduced
Hanford/Ringold Sediment that was Spiked

with TcO4
-

Synchrotron X-ray Microscopy of Bioreduced
Hanford/Ringold Sediment that was Spiked

with TcO4
-
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Influence of NO3
- on TcO4

- Reduction by
Bioreduced, Pasteurized FRC Sediment
Influence of NO3

- on TcO4
- Reduction by

Bioreduced, Pasteurized FRC Sediment
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Lability of Biogenic Fe(II) in FRC Sediment
to Reaction with Environmental Oxidants

Lability of Biogenic Fe(II) in FRC Sediment
to Reaction with Environmental Oxidants
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Oxidation of Biogenic of TcO2•nH2O in Single
Phase Suspensions and in FRC Sediment

Oxidation of Biogenic of TcO2•nH2O in Single
Phase Suspensions and in FRC Sediment
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Findings to Date – Tc(VII) ReductionFindings to Date – Tc(VII) Reduction

Biogenic Fe(II) is strongly sorbed by different sediments

Quantifying Fe(II) speciation is difficult

Biogenic Fe(II) is a strong reductant for TcO4
-

Redox properties of sorbed Fe(II) wrt Tc(VII) reduction
are difficult to rigorously define

Fe(II) surface precipitates appear as the strongest Tc(VII)
reductants

Similarities and differences in the reactivity of sediment
Fe(II) for Tc(VII)
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The relative rate of TcO2•nH2O oxidation is slower than
Tc(VII) reduction

Presumptive evidence from oxidation behavior that Fe(II)
and Tc(IV) are closely associated

Chemical/mineralogic

Physical

Fe(II) oxidizes more rapidly than Tc(IV), but oxidation is
incomplete

Fe(III) oxidation products influence Tc(IV) oxidation
Intragrain, intrapore mass transfer effects

Fixing Fe(II)/Tc(IV) proximity

Findings to Date – Tc(IV) OxidationFindings to Date – Tc(IV) Oxidation
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Areas for Future ResearchAreas for Future Research

Identity of biogenic Fe(II) reductants

Molecular association of Fe(II) and Tc(IV)

Thermodynamic and kinetic reaction parameters for
biogenic Fe(II)

Kinetic reaction parameters for “abiotic” TcO2•nH2O

Physical and chemical controls on TcO2•nH2O oxidation

Linked geochemical, microbiologic, and hydrologic
modeling of reductive and oxidative processes
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Tentative Discussion TopicsTentative Discussion Topics

1. Microbiologic uncertainties

Presence of suitable organisms

Enzymatic reduction and oxidation

Reactivity of periplasmic TcO2•nH2O

In-situ bioreduction rates and influence of co-contaminants

2. Geochemical and hydrologic uncertainties

Controlling factors, reaction mechanisms, and rate laws for
abiotic reduction and oxidation

Identifying and quantifying solid phase reductants and oxidants

Mass transfer and advective controls on Tc oxidation and
reduction

Microbiologic evolution of physical and chemical properties

3. Key areas for future research


